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Volume 
•  Challenge: Scale of data beyond what current approaches can handle 

Velocity 
•  Challenge: Rate of data beyond what current approaches can handle 

Variety 
•  Challenge: Diversity of data beyond what current approaches can handle 

Big Data Challenges 
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Volume 
•  Challenge: Scale of data beyond what current approaches can handle 
•  Hardware Solution: Scale-out, more servers per data center (hyperscale) 

Velocity 
•  Challenge: Rate of data beyond what current approaches can handle 
•  Hardware Solution: Scale-up, more transistors per server (accelerators) 

Variety 
•  Challenge: Diversity of data beyond what current approaches can handle 
•  Hardware Solution: Scale-deep, more customizable processors (FPGAs, ...) 

Big Data Hardware Solutions 

Requires mathematically rigorous approaches to insulate users from scaling 

architecture [14] was developed to provide significantly higher 
throughput than the conventional merge sorters. 

The k-way merge sorter sorts long sequences of numbers 
by using a recursive “divide and conquer” approach. It divides 
the sequence into k sequences that have equal, or as equal as 
possible, lengths. The k shorter sequences are then sorted 
independently and merged to produce the sorted result. The 
sorting of k shorter sequences can also be divided into k even 
shorter sequences and sorted recursively by using the same 
merge sort algorithm. This process is recursively repeated until 
the divided sequence length reaches 1. The sorting process 
takes order nlogkn memory cycles. The k-way merge sort is 
log2k times faster than the 2-way merge sort process when k is 
greater than 2. For example, when k = 32, the k-way merge 
sorter has five times greater sorter throughput than the 2-way 
merge sorter.   The main difficulty with implementing a k-way 
merge sorter in a conventional processor is that it takes many 
clock cycles to figure out the smallest (or largest) value among 
k entries during each step of the merge sorting process. Ideally, 
the smallest value of k should be computed within one 
processor clock cycle for the maximum sorter throughput. The 
100% efficient systolic merge sorter [9] can achieve this 
performance requirement using k linear systolic array cells and 
it is particularly well suited for FPGA and integrated circuit 
(IC) implementation since it consists of repeated systolic cells 
with nearest-neighbor-only communications. 

C. 6D Toroidal Communication Network and 
Randomized Message Routing 

The new graph processor architecture is a parallel processor 
interconnected in a 6D toroidal configuration using high 
bandwidth optical links. The 6D toroid provides much higher 
communication performance than lower-dimensional toroids 
because of the higher bisection bandwidth.  

The communication network is designed as a packet-
routing network optimized to support small packet sizes that 
are as small as a single sparse matrix element. The network 
scheduling and protocol are designed such that successive 
communication packets from a node would have randomized 
destinations in order to minimize network congestion [15]. 
This design is a great contrast to typical conventional 
multiprocessor message-routing schemes that are based on 
much larger message sizes and globally arbitrated routing that 
are used in order to minimize the message-routing overhead. 
However, large message-based communications are often 
difficult to route and can have a relatively high message 
contention rate caused by the long time periods during which 
the involved communication links are tied up. The small 
message sizes, along with randomized destination routing, 
minimize message contentions and improve the overall 
network communication throughput. Figure 6 shows the 512-
node (8 × 8 × 8) 3D toroidal network (drawn as 3 × 3 × 3 
network for illustration purposes) simulation based on 
randomized destination communication versus unique 
destination communication. Even though both routing methods 
are based on small message sizes, the unique destination 
routing has a message contention rate that is closer to the 
contention rate of conventional routing algorithms that are 

based on large message sizes. The randomized destination 
routing achieved approximately six times higher data rate and 
network utilization efficiency in the simulation using an 
identical network. 

Fig. 6. Randomized destination vs. unique destination packet 
communication. 

 

 

 

 

 

 

 

 

 

III. FPGA PROTOTYPE DEVELOPMENT AND PERFORMANCE 
MEASUREMENT 

Lincoln Laboratory has developed an FPGA prototype of 
the graph processor using commercial FPGA boards as shown 
in Figure 7.  Each board has one large FPGA and two 4-GByte 
DDR3 memory banks.  Two graph processor nodes are 
implemented in each board.  A small 4-board chassis 
implements an 8-node graph processor tied together with 1D 
toroidal network. Since the commercial board offered limited 
scalability due to limited number of communication ports for 
network connection, the larger prototypes will be developed in 
the future using custom FPGA boards that can support 6D 
toroidal network and up to 1 million nodes.   

Fig. 7. FPGA prototype of the graph processor. 
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“Bring the power of databases to all data.” –Jim Held (Intel Fellow)  

 
•  Deliver database capabilities to a much broader set of data 

–  Sorting, indexing, search, ..., for all data 
–  Provide declarative, mathematically rigorous interfaces that enable hardware scale-out 

•  Integrate computational capabilities into a much broader set of databases 
–  Graph processing, matrix mathematics, machine learning, ..., inside the database 
–  Provide declarative, mathematically rigorous interfaces that enable hardware scale-up 

•  BigDAWG interface to allow diverse data to move seamlessly across databases 
–  SQL, NoSQL, NewSQL, ..., in the same application 
–  Provide declarative, mathematically rigorous interfaces that enable hardware scale-deep 

Our Approach 
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A Relational Model of Data for 
Large Shared Data Banks 

E. F. CODD 
IBM Research Laboratory, San Jose, California 

Future users of large data banks must be protected from 
having to know how the data is organized in the machine (the 
internal representation). A prompting service which supplies 
such information is not a satisfactory solution. Activities of users 
at terminals and most application programs should remain 
unaffected when the internal representation of data is changed 
and even when some aspects of the external representation 
are changed. Changes in data representation will often be 
needed as a result of changes in query, update, and report 
traffic and natural growth in the types of stored information. 

Existing noninferential, formatted data systems provide users 
with tree-structured files or slightly more general network 
models of the data. In Section 1, inadequacies of these models 
are discussed. A model based on n-ary relations, a normal 
form for data base relations, and the concept of a universal 
data sublanguage are introduced. In Section 2, certain opera- 
tions on relations (other than logical inference) are discussed 
and applied to the problems of redundancy and consistency 
in the user’s model. 

KEY WORDS AND PHRASES: data bank, data base, data structure, data 
organization, hierarchies of data, networks of data, relations, derivability, 

redundancy, consistency, composition, join, retrieval language, predicate 
calculus, security, data integrity 

CR CATEGORIES: 3.70, 3.73, 3.75, 4.20, 4.22, 4.29 

1. Relational Model and Normal Form 

1 .I. INTR~xJ~TI~N 
This paper is concerned with the application of ele- 

mentary relation theory to systems which provide shared 
access to large banks of formatted data. Except for a paper 
by Childs [l], the principal application of relations to data 
systems has been to deductive question-answering systems. 
Levein and Maron [2] provide numerous references to work 
in this area. 

In contrast, the problems treated here are those of data 
independence-the independence of application programs 
and terminal activities from growth in data types and 
changes in data representation-and certain kinds of data 
inconsistency which are expected to become troublesome 
even in nondeductive systems. 

Volume 13 / Number 6 / June, 1970 

The relational view (or model) of data described in 
Section 1 appears to be superior in several respects to the 
graph or network model [3,4] presently in vogue for non- 
inferential systems. It provides a means of describing data 
with its natural structure only-that is, without superim- 
posing any additional structure for machine representation 
purposes. Accordingly, it provides a basis for a high level 
data language which will yield maximal independence be- 
tween programs on the one hand and machine representa- 
tion and organization of data on the other. 

A further advantage of the relational view is that it 
forms a sound basis for treating derivability, redundancy, 
and consistency of relations-these are discussed in Section 
2. The network model, on the other hand, has spawned a 
number of confusions, not the least of which is mistaking 
the derivation of connections for the derivation of rela- 
tions (see remarks in Section 2 on the “connection trap”). 

Finally, the relational view permits a clearer evaluation 
of the scope and logical limitations of present formatted 
data systems, and also the relative merits (from a logical 
standpoint) of competing representations of data within a 
single system. Examples of this clearer perspective are 
cited in various parts of this paper. Implementations of 
systems to support the relational model are not discussed. 

1.2. DATA DEPENDENCIES IN PRESENT SYSTEMS 
The provision of data description tables in recently de- 

veloped information systems represents a major advance 
toward the goal of data independence [5,6,7]. Such tables 
facilitate changing certain characteristics of the data repre- 
sentation stored in a data bank. However, the variety of 
data representation characteristics which can be changed 
without logically impairing some application programs is 
still quite limited. Further, the model of data with which 
users interact is still cluttered with representational prop- 
erties, particularly in regard to the representation of col- 
lections of data (as opposed to individual items). Three of 
the principal kinds of data dependencies which still need 
to be removed are: ordering dependence, indexing depend- 
ence, and access path dependence. In some systems these 
dependencies are not clearly separable from one another. 

1.2.1. Ordering Dependence. Elements of data in a 
data bank may be stored in a variety of ways, some involv- 
ing no concern for ordering, some permitting each element 
to participate in one ordering only, others permitting each 
element to participate in several orderings. Let us consider 
those existing systems which either require or permit data 
elements to be stored in at least one total ordering which is 
closely associated with the hardware-determined ordering 
of addresses. For example, the records of a file concerning 
parts might be stored in ascending order by part serial 
number. Such systems normally permit application pro- 
grams to assume that the order of presentation of records 
from such a file is identical to (or is a subordering of) the 
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Bigtable: A Distributed Storage System for Structured Data
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Mike Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber
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Google, Inc.

Abstract
Bigtable is a distributed storage system for managing
structured data that is designed to scale to a very large
size: petabytes of data across thousands of commodity
servers. Many projects at Google store data in Bigtable,
including web indexing, Google Earth, and Google Fi-
nance. These applications place very different demands
on Bigtable, both in terms of data size (from URLs to
web pages to satellite imagery) and latency requirements
(from backend bulk processing to real-time data serving).
Despite these varied demands, Bigtable has successfully
provided a flexible, high-performance solution for all of
these Google products. In this paper we describe the sim-
ple data model provided by Bigtable, which gives clients
dynamic control over data layout and format, and we de-
scribe the design and implementation of Bigtable.

1 Introduction

Over the last two and a half years we have designed,
implemented, and deployed a distributed storage system
for managing structured data at Google called Bigtable.
Bigtable is designed to reliably scale to petabytes of
data and thousands of machines. Bigtable has achieved
several goals: wide applicability, scalability, high per-
formance, and high availability. Bigtable is used by
more than sixty Google products and projects, includ-
ing Google Analytics, Google Finance, Orkut, Person-
alized Search, Writely, and Google Earth. These prod-
ucts use Bigtable for a variety of demanding workloads,
which range from throughput-oriented batch-processing
jobs to latency-sensitive serving of data to end users.
The Bigtable clusters used by these products span a wide
range of configurations, from a handful to thousands of
servers, and store up to several hundred terabytes of data.
In manyways, Bigtable resembles a database: it shares
many implementation strategies with databases. Paral-
lel databases [14] and main-memory databases [13] have

achieved scalability and high performance, but Bigtable
provides a different interface than such systems. Bigtable
does not support a full relational data model; instead, it
provides clients with a simple data model that supports
dynamic control over data layout and format, and al-
lows clients to reason about the locality properties of the
data represented in the underlying storage. Data is in-
dexed using row and column names that can be arbitrary
strings. Bigtable also treats data as uninterpreted strings,
although clients often serialize various forms of struc-
tured and semi-structured data into these strings. Clients
can control the locality of their data through careful
choices in their schemas. Finally, Bigtable schema pa-
rameters let clients dynamically control whether to serve
data out of memory or from disk.
Section 2 describes the data model in more detail, and
Section 3 provides an overview of the client API. Sec-
tion 4 briefly describes the underlying Google infrastruc-
ture on which Bigtable depends. Section 5 describes the
fundamentals of the Bigtable implementation, and Sec-
tion 6 describes some of the refinements that we made
to improve Bigtable’s performance. Section 7 provides
measurements of Bigtable’s performance. We describe
several examples of how Bigtable is used at Google
in Section 8, and discuss some lessons we learned in
designing and supporting Bigtable in Section 9. Fi-
nally, Section 10 describes related work, and Section 11
presents our conclusions.

2 Data Model

A Bigtable is a sparse, distributed, persistent multi-
dimensional sorted map. The map is indexed by a row
key, column key, and a timestamp; each value in the map
is an uninterpreted array of bytes.

(row:string, column:string, time:int64) → string

To appear in OSDI 2006 1
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ABSTRACT 
 In this paper, we examine a number of SQL and so-
called “NoSQL” data stores designed to scale simple 
OLTP-style application loads over many servers.  
Originally motivated by Web 2.0 applications, these 
systems are designed to scale to thousands or millions 
of users doing updates as well as reads, in contrast to 
traditional DBMSs and data warehouses. We contrast 
the new systems on their data model, consistency 
mechanisms, storage mechanisms, durability 
guarantees, availability, query support, and other 
dimensions.  These systems typically sacrifice some of 
these dimensions, e.g. database-wide transaction 
consistency, in order to achieve others, e.g. higher 
availability and scalability. 
Note: Bibliographic references for systems are not 
listed, but URLs for more information can be found in 
the System References table at the end of this paper.  

Caveat: Statements in this paper are based on sources 
and documentation that may not be reliable, and the 
systems described are “moving targets,” so some 
statements may be incorrect. Verify through other 
sources before depending on information here. 
Nevertheless, we hope this comprehensive survey is 
useful!  Check for future corrections on the author’s 
web site cattell.net/datastores. 
Disclosure: The author is on the technical advisory 
board of Schooner Technologies and has a consulting 
business advising on scalable databases. 

1. OVERVIEW 
In recent years a number of new systems have been 
designed to provide good horizontal scalability for 
simple read/write database operations distributed over 
many servers.  In contrast, traditional database 
products have comparatively little or no ability to scale 
horizontally on these applications.  This paper 
examines and compares the various new systems. 
Many of the new systems are referred to as “NoSQL” 
data stores.  The definition of NoSQL, which stands 
for “Not Only SQL” or “Not Relational”, is not 
entirely agreed upon.  For the purposes of this paper, 
NoSQL systems generally have six key features: 

1. the ability to horizontally scale “simple 
operation” throughput over many servers,  

2. the ability to replicate and to distribute (partition) 
data over many servers, 

3. a simple call level interface or protocol (in 
contrast to a SQL binding), 

4. a weaker concurrency model than the ACID 
transactions of most relational (SQL) database 
systems, 

5. efficient use of distributed indexes and RAM for 
data storage, and 

6. the ability to dynamically add new attributes to 
data records. 

The systems differ in other ways, and in this paper we 
contrast those differences.  They range in functionality 
from the simplest distributed hashing, as supported by 
the popular memcached open source cache, to highly 
scalable partitioned tables, as supported by Google’s 
BigTable [1].  In fact, BigTable, memcached, and 
Amazon’s Dynamo [2] provided a “proof of concept” 
that inspired many of the data stores we describe here: 
• Memcached demonstrated that in-memory indexes 

can be highly scalable, distributing and replicating 
objects over multiple nodes. 

• Dynamo pioneered the idea of eventual 
consistency as a way to achieve higher availability 
and scalability: data fetched are not guaranteed to 
be up-to-date, but updates are guaranteed to be 
propagated to all nodes eventually. 

• BigTable demonstrated that persistent record 
storage could be scaled to thousands of nodes, a 
feat that most of the other systems aspire to. 

A key feature of NoSQL systems is “shared nothing” 
horizontal scaling – replicating and partitioning data 
over many servers.  This allows them to support a large 
number of simple read/write operations per second.  
This simple operation load is traditionally called OLTP 
(online transaction processing), but it is also common 
in modern web applications 
The NoSQL systems described here generally do not 
provide ACID transactional properties: updates are 
eventually propagated, but there are limited guarantees 
on the consistency of reads.  Some authors suggest a 
“BASE” acronym in contrast to the “ACID” acronym: 
• BASE = Basically Available, Soft state, 

Eventually consistent 
• ACID = Atomicity, Consistency, Isolation, and 

Durability 
The idea is that by giving up ACID constraints, one 
can achieve much higher performance and scalability.   

NewSQL 
Cattell (2010) 

SQL Era NoSQL Era NewSQL Era Future 

Federated, high 
performance 
ingest and 
analytics 

Fast analytics inside databases Common interface Rapid ingest for internet search 

SQL = Structured Query Language 
NoSQL = Not only SQL 

DoD Prof. Stonebraker 
(MIT) 

Lincoln Prof. Stonebraker 
(U.C. Berkeley) 

Larry Ellison 

Chapter 1

Storage and Database Management for Big

Data

1.1 Introduction

The ability to collect and analyze large amounts of data is a growing problem within the scientific

community. The growing gap between data and users calls for innovative tools that address the

challenges faced by big data volume, velocity and variety. While there has been great progress in

the world of database technologies in the past few years, there are still many fundamental consider-

ations that must be made by scientists. For example, which of the seemingly infinite technologies

are the best to use for my problem? Answers to such questions require a careful understanding of

the technology field in addition to the types of problems that are being solved. This chapter aims to

address many of the pressing questions faced by individuals interested in using storage or database

technologies to solve their big data problems.

This work is sponsored by the Assistant Secretary of Defense for Research and Engineering under Air Force Contract #FA8721-05-C-0002.
Opinions, interpretations, recommendations and conclusions are those of the authors and are not necessarily endorsed by the United States Govern-
ment.
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(2016) 
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Declarative, Mathematically Rigorous Interfaces 

v ATvAT
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cited 

cited 

SQL 
Set Operations 

NoSQL 
Graph Operations  

NewSQL 
Linear Algebra 

 
 
 

Associative Array Algebra Provides a Unified Mathematics for SQL, NoSQL, NewSQL 
 
 

Operations in All Representations are Equivalent 
 

A = NxM(k1,k2,v,⊕)          (k1,k2,v) = A       C = AT       C = A ⊕ B      C = A ⊗ C       C = A B = A ⊕.⊗ B

from link to 
001 alice cited bob 
002 bob cited alice 
003 alice cited carl 

SELECT  
WHERE from=alice 
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D4M and Large Array Databases for Management and Analysis of Large Biomedical Imaging Data, Samsi et al., NEDB 2016 
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architecture [14] was developed to provide significantly higher 
throughput than the conventional merge sorters. 

The k-way merge sorter sorts long sequences of numbers 
by using a recursive “divide and conquer” approach. It divides 
the sequence into k sequences that have equal, or as equal as 
possible, lengths. The k shorter sequences are then sorted 
independently and merged to produce the sorted result. The 
sorting of k shorter sequences can also be divided into k even 
shorter sequences and sorted recursively by using the same 
merge sort algorithm. This process is recursively repeated until 
the divided sequence length reaches 1. The sorting process 
takes order nlogkn memory cycles. The k-way merge sort is 
log2k times faster than the 2-way merge sort process when k is 
greater than 2. For example, when k = 32, the k-way merge 
sorter has five times greater sorter throughput than the 2-way 
merge sorter.   The main difficulty with implementing a k-way 
merge sorter in a conventional processor is that it takes many 
clock cycles to figure out the smallest (or largest) value among 
k entries during each step of the merge sorting process. Ideally, 
the smallest value of k should be computed within one 
processor clock cycle for the maximum sorter throughput. The 
100% efficient systolic merge sorter [9] can achieve this 
performance requirement using k linear systolic array cells and 
it is particularly well suited for FPGA and integrated circuit 
(IC) implementation since it consists of repeated systolic cells 
with nearest-neighbor-only communications. 

C. 6D Toroidal Communication Network and 
Randomized Message Routing 

The new graph processor architecture is a parallel processor 
interconnected in a 6D toroidal configuration using high 
bandwidth optical links. The 6D toroid provides much higher 
communication performance than lower-dimensional toroids 
because of the higher bisection bandwidth.  

The communication network is designed as a packet-
routing network optimized to support small packet sizes that 
are as small as a single sparse matrix element. The network 
scheduling and protocol are designed such that successive 
communication packets from a node would have randomized 
destinations in order to minimize network congestion [15]. 
This design is a great contrast to typical conventional 
multiprocessor message-routing schemes that are based on 
much larger message sizes and globally arbitrated routing that 
are used in order to minimize the message-routing overhead. 
However, large message-based communications are often 
difficult to route and can have a relatively high message 
contention rate caused by the long time periods during which 
the involved communication links are tied up. The small 
message sizes, along with randomized destination routing, 
minimize message contentions and improve the overall 
network communication throughput. Figure 6 shows the 512-
node (8 × 8 × 8) 3D toroidal network (drawn as 3 × 3 × 3 
network for illustration purposes) simulation based on 
randomized destination communication versus unique 
destination communication. Even though both routing methods 
are based on small message sizes, the unique destination 
routing has a message contention rate that is closer to the 
contention rate of conventional routing algorithms that are 

based on large message sizes. The randomized destination 
routing achieved approximately six times higher data rate and 
network utilization efficiency in the simulation using an 
identical network. 

Fig. 6. Randomized destination vs. unique destination packet 
communication. 

 

 

 

 

 

 

 

 

 

III. FPGA PROTOTYPE DEVELOPMENT AND PERFORMANCE 
MEASUREMENT 

Lincoln Laboratory has developed an FPGA prototype of 
the graph processor using commercial FPGA boards as shown 
in Figure 7.  Each board has one large FPGA and two 4-GByte 
DDR3 memory banks.  Two graph processor nodes are 
implemented in each board.  A small 4-board chassis 
implements an 8-node graph processor tied together with 1D 
toroidal network. Since the commercial board offered limited 
scalability due to limited number of communication ports for 
network connection, the larger prototypes will be developed in 
the future using custom FPGA boards that can support 6D 
toroidal network and up to 1 million nodes.   

Fig. 7. FPGA prototype of the graph processor. 

 

 

 

 

 

 

 

 

 

 

 

 



Slide - 14 

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G  C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G  C E N T E R

•  Introduction 

•  Approach 

•  Future 

•  Summary 

Outline 



Slide - 15 

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G  C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G  C E N T E R

Computing Past 
Serial 
Local 

Homogeneous 
Deterministic 

 
OS Managed 

Processes 
Memory 

Files 

Communications 
Security 

Challenge: New OS for a New Era of Computers 

Computing Present 
Massively Parallel 
Distributed 

Heterogeneous 
Non-Deterministic 

 
User Managed 

Processes 
Memory 
Files 

Communications 
Security 

architecture [14] was developed to provide significantly higher 
throughput than the conventional merge sorters. 

The k-way merge sorter sorts long sequences of numbers 
by using a recursive “divide and conquer” approach. It divides 
the sequence into k sequences that have equal, or as equal as 
possible, lengths. The k shorter sequences are then sorted 
independently and merged to produce the sorted result. The 
sorting of k shorter sequences can also be divided into k even 
shorter sequences and sorted recursively by using the same 
merge sort algorithm. This process is recursively repeated until 
the divided sequence length reaches 1. The sorting process 
takes order nlogkn memory cycles. The k-way merge sort is 
log2k times faster than the 2-way merge sort process when k is 
greater than 2. For example, when k = 32, the k-way merge 
sorter has five times greater sorter throughput than the 2-way 
merge sorter.   The main difficulty with implementing a k-way 
merge sorter in a conventional processor is that it takes many 
clock cycles to figure out the smallest (or largest) value among 
k entries during each step of the merge sorting process. Ideally, 
the smallest value of k should be computed within one 
processor clock cycle for the maximum sorter throughput. The 
100% efficient systolic merge sorter [9] can achieve this 
performance requirement using k linear systolic array cells and 
it is particularly well suited for FPGA and integrated circuit 
(IC) implementation since it consists of repeated systolic cells 
with nearest-neighbor-only communications. 

C. 6D Toroidal Communication Network and 
Randomized Message Routing 

The new graph processor architecture is a parallel processor 
interconnected in a 6D toroidal configuration using high 
bandwidth optical links. The 6D toroid provides much higher 
communication performance than lower-dimensional toroids 
because of the higher bisection bandwidth.  

The communication network is designed as a packet-
routing network optimized to support small packet sizes that 
are as small as a single sparse matrix element. The network 
scheduling and protocol are designed such that successive 
communication packets from a node would have randomized 
destinations in order to minimize network congestion [15]. 
This design is a great contrast to typical conventional 
multiprocessor message-routing schemes that are based on 
much larger message sizes and globally arbitrated routing that 
are used in order to minimize the message-routing overhead. 
However, large message-based communications are often 
difficult to route and can have a relatively high message 
contention rate caused by the long time periods during which 
the involved communication links are tied up. The small 
message sizes, along with randomized destination routing, 
minimize message contentions and improve the overall 
network communication throughput. Figure 6 shows the 512-
node (8 × 8 × 8) 3D toroidal network (drawn as 3 × 3 × 3 
network for illustration purposes) simulation based on 
randomized destination communication versus unique 
destination communication. Even though both routing methods 
are based on small message sizes, the unique destination 
routing has a message contention rate that is closer to the 
contention rate of conventional routing algorithms that are 

based on large message sizes. The randomized destination 
routing achieved approximately six times higher data rate and 
network utilization efficiency in the simulation using an 
identical network. 

Fig. 6. Randomized destination vs. unique destination packet 
communication. 
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MEASUREMENT 

Lincoln Laboratory has developed an FPGA prototype of 
the graph processor using commercial FPGA boards as shown 
in Figure 7.  Each board has one large FPGA and two 4-GByte 
DDR3 memory banks.  Two graph processor nodes are 
implemented in each board.  A small 4-board chassis 
implements an 8-node graph processor tied together with 1D 
toroidal network. Since the commercial board offered limited 
scalability due to limited number of communication ports for 
network connection, the larger prototypes will be developed in 
the future using custom FPGA boards that can support 6D 
toroidal network and up to 1 million nodes.   
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Potential Organizing Principles 
•  Faster, simpler, easier-to-use, provides the data to know what happened when  

•  Database, data analysis, machine learning are first order operations 

•  OS designed to analyze itself 

•  Graduate Unix's "everything is a file" philosophy to "everything is a table” 

•  Rigorously defined mathematical interfaces and properties 

TabularOSA: Tabular Operating System Architecture 
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Volume 
•  Challenge: Scale of data beyond what current approaches can handle 
•  Hardware Solution: Scale-out, more servers per data center (hyperscale) 

Velocity 
•  Challenge: Rate of data beyond what current approaches can handle 
•  Hardware Solution: Scale-up, more transistors per server (accelerators) 

Variety 
•  Challenge: Diversity of data beyond what current approaches can handle 
•  Hardware Solution: Scale-deep, more customizable processors (FPGAs, ...) 

Summary 

Requires mathematically rigorous approaches to insulate users from scaling 

architecture [14] was developed to provide significantly higher 
throughput than the conventional merge sorters. 

The k-way merge sorter sorts long sequences of numbers 
by using a recursive “divide and conquer” approach. It divides 
the sequence into k sequences that have equal, or as equal as 
possible, lengths. The k shorter sequences are then sorted 
independently and merged to produce the sorted result. The 
sorting of k shorter sequences can also be divided into k even 
shorter sequences and sorted recursively by using the same 
merge sort algorithm. This process is recursively repeated until 
the divided sequence length reaches 1. The sorting process 
takes order nlogkn memory cycles. The k-way merge sort is 
log2k times faster than the 2-way merge sort process when k is 
greater than 2. For example, when k = 32, the k-way merge 
sorter has five times greater sorter throughput than the 2-way 
merge sorter.   The main difficulty with implementing a k-way 
merge sorter in a conventional processor is that it takes many 
clock cycles to figure out the smallest (or largest) value among 
k entries during each step of the merge sorting process. Ideally, 
the smallest value of k should be computed within one 
processor clock cycle for the maximum sorter throughput. The 
100% efficient systolic merge sorter [9] can achieve this 
performance requirement using k linear systolic array cells and 
it is particularly well suited for FPGA and integrated circuit 
(IC) implementation since it consists of repeated systolic cells 
with nearest-neighbor-only communications. 

C. 6D Toroidal Communication Network and 
Randomized Message Routing 

The new graph processor architecture is a parallel processor 
interconnected in a 6D toroidal configuration using high 
bandwidth optical links. The 6D toroid provides much higher 
communication performance than lower-dimensional toroids 
because of the higher bisection bandwidth.  

The communication network is designed as a packet-
routing network optimized to support small packet sizes that 
are as small as a single sparse matrix element. The network 
scheduling and protocol are designed such that successive 
communication packets from a node would have randomized 
destinations in order to minimize network congestion [15]. 
This design is a great contrast to typical conventional 
multiprocessor message-routing schemes that are based on 
much larger message sizes and globally arbitrated routing that 
are used in order to minimize the message-routing overhead. 
However, large message-based communications are often 
difficult to route and can have a relatively high message 
contention rate caused by the long time periods during which 
the involved communication links are tied up. The small 
message sizes, along with randomized destination routing, 
minimize message contentions and improve the overall 
network communication throughput. Figure 6 shows the 512-
node (8 × 8 × 8) 3D toroidal network (drawn as 3 × 3 × 3 
network for illustration purposes) simulation based on 
randomized destination communication versus unique 
destination communication. Even though both routing methods 
are based on small message sizes, the unique destination 
routing has a message contention rate that is closer to the 
contention rate of conventional routing algorithms that are 

based on large message sizes. The randomized destination 
routing achieved approximately six times higher data rate and 
network utilization efficiency in the simulation using an 
identical network. 

Fig. 6. Randomized destination vs. unique destination packet 
communication. 

 

 

 

 

 

 

 

 

 

III. FPGA PROTOTYPE DEVELOPMENT AND PERFORMANCE 
MEASUREMENT 

Lincoln Laboratory has developed an FPGA prototype of 
the graph processor using commercial FPGA boards as shown 
in Figure 7.  Each board has one large FPGA and two 4-GByte 
DDR3 memory banks.  Two graph processor nodes are 
implemented in each board.  A small 4-board chassis 
implements an 8-node graph processor tied together with 1D 
toroidal network. Since the commercial board offered limited 
scalability due to limited number of communication ports for 
network connection, the larger prototypes will be developed in 
the future using custom FPGA boards that can support 6D 
toroidal network and up to 1 million nodes.   

Fig. 7. FPGA prototype of the graph processor. 

 

 

 

 

 

 

 

 

 

 

 

 


