
MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

Enabling
Scale-Up, Scale-Out, and Scale-Deep

for Big Data

Dr. Jeremy Kepner

Jan 2017

This material is based upon work supported by the Assistant Secretary of Defense for Research and Engineering under Air
Force Contract No. FA8721-05-C-0002 and/or FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the Assistant Secretary of
Defense for Research and Engineering.
© 2016 Massachusetts Institute of Technology.

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014).
Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS
252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate
any copyrights that exist in this work.

Slide - 2

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

•  Introduction

•  Approach

•  Future

•  Summary

Outline

Slide - 3

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

Volume
•  Challenge: Scale of data beyond what current approaches can handle

Velocity
•  Challenge: Rate of data beyond what current approaches can handle

Variety
•  Challenge: Diversity of data beyond what current approaches can handle

Big Data Challenges

Slide - 4

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

Volume
•  Challenge: Scale of data beyond what current approaches can handle
•  Hardware Solution: Scale-out, more servers per data center (hyperscale)

Velocity
•  Challenge: Rate of data beyond what current approaches can handle
•  Hardware Solution: Scale-up, more transistors per server (accelerators)

Variety
•  Challenge: Diversity of data beyond what current approaches can handle
•  Hardware Solution: Scale-deep, more customizable processors (FPGAs, ...)

Big Data Hardware Solutions

Requires mathematically rigorous approaches to insulate users from scaling

architecture [14] was developed to provide significantly higher
throughput than the conventional merge sorters.

The k-way merge sorter sorts long sequences of numbers
by using a recursive “divide and conquer” approach. It divides
the sequence into k sequences that have equal, or as equal as
possible, lengths. The k shorter sequences are then sorted
independently and merged to produce the sorted result. The
sorting of k shorter sequences can also be divided into k even
shorter sequences and sorted recursively by using the same
merge sort algorithm. This process is recursively repeated until
the divided sequence length reaches 1. The sorting process
takes order nlogkn memory cycles. The k-way merge sort is
log2k times faster than the 2-way merge sort process when k is
greater than 2. For example, when k = 32, the k-way merge
sorter has five times greater sorter throughput than the 2-way
merge sorter. The main difficulty with implementing a k-way
merge sorter in a conventional processor is that it takes many
clock cycles to figure out the smallest (or largest) value among
k entries during each step of the merge sorting process. Ideally,
the smallest value of k should be computed within one
processor clock cycle for the maximum sorter throughput. The
100% efficient systolic merge sorter [9] can achieve this
performance requirement using k linear systolic array cells and
it is particularly well suited for FPGA and integrated circuit
(IC) implementation since it consists of repeated systolic cells
with nearest-neighbor-only communications.

C. 6D Toroidal Communication Network and
Randomized Message Routing

The new graph processor architecture is a parallel processor
interconnected in a 6D toroidal configuration using high
bandwidth optical links. The 6D toroid provides much higher
communication performance than lower-dimensional toroids
because of the higher bisection bandwidth.

The communication network is designed as a packet-
routing network optimized to support small packet sizes that
are as small as a single sparse matrix element. The network
scheduling and protocol are designed such that successive
communication packets from a node would have randomized
destinations in order to minimize network congestion [15].
This design is a great contrast to typical conventional
multiprocessor message-routing schemes that are based on
much larger message sizes and globally arbitrated routing that
are used in order to minimize the message-routing overhead.
However, large message-based communications are often
difficult to route and can have a relatively high message
contention rate caused by the long time periods during which
the involved communication links are tied up. The small
message sizes, along with randomized destination routing,
minimize message contentions and improve the overall
network communication throughput. Figure 6 shows the 512-
node (8 × 8 × 8) 3D toroidal network (drawn as 3 × 3 × 3
network for illustration purposes) simulation based on
randomized destination communication versus unique
destination communication. Even though both routing methods
are based on small message sizes, the unique destination
routing has a message contention rate that is closer to the
contention rate of conventional routing algorithms that are

based on large message sizes. The randomized destination
routing achieved approximately six times higher data rate and
network utilization efficiency in the simulation using an
identical network.

Fig. 6. Randomized destination vs. unique destination packet
communication.

III. FPGA PROTOTYPE DEVELOPMENT AND PERFORMANCE
MEASUREMENT

Lincoln Laboratory has developed an FPGA prototype of
the graph processor using commercial FPGA boards as shown
in Figure 7. Each board has one large FPGA and two 4-GByte
DDR3 memory banks. Two graph processor nodes are
implemented in each board. A small 4-board chassis
implements an 8-node graph processor tied together with 1D
toroidal network. Since the commercial board offered limited
scalability due to limited number of communication ports for
network connection, the larger prototypes will be developed in
the future using custom FPGA boards that can support 6D
toroidal network and up to 1 million nodes.

Fig. 7. FPGA prototype of the graph processor.

Slide - 5

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

“Bring the power of databases to all data.” –Jim Held (Intel Fellow)

•  Deliver database capabilities to a much broader set of data

–  Sorting, indexing, search, ..., for all data
–  Provide declarative, mathematically rigorous interfaces that enable hardware scale-out

•  Integrate computational capabilities into a much broader set of databases
–  Graph processing, matrix mathematics, machine learning, ..., inside the database
–  Provide declarative, mathematically rigorous interfaces that enable hardware scale-up

•  BigDAWG interface to allow diverse data to move seamlessly across databases
–  SQL, NoSQL, NewSQL, ..., in the same application
–  Provide declarative, mathematically rigorous interfaces that enable hardware scale-deep

Our Approach

Slide - 6

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

•  Introduction

•  Approach

•  Future

•  Summary

Outline

Slide - 7

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

Modern Database Paradigm Shifts

NoSQL

Relational Databases (SQL) 2006

NewSQL

1970

Information Retrieval P. BAXENDALE, Editor

A Relational Model of Data for
Large Shared Data Banks

E. F. CODD
IBM Research Laboratory, San Jose, California

Future users of large data banks must be protected from
having to know how the data is organized in the machine (the
internal representation). A prompting service which supplies
such information is not a satisfactory solution. Activities of users
at terminals and most application programs should remain
unaffected when the internal representation of data is changed
and even when some aspects of the external representation
are changed. Changes in data representation will often be
needed as a result of changes in query, update, and report
traffic and natural growth in the types of stored information.

Existing noninferential, formatted data systems provide users
with tree-structured files or slightly more general network
models of the data. In Section 1, inadequacies of these models
are discussed. A model based on n-ary relations, a normal
form for data base relations, and the concept of a universal
data sublanguage are introduced. In Section 2, certain opera-
tions on relations (other than logical inference) are discussed
and applied to the problems of redundancy and consistency
in the user’s model.

KEY WORDS AND PHRASES: data bank, data base, data structure, data
organization, hierarchies of data, networks of data, relations, derivability,

redundancy, consistency, composition, join, retrieval language, predicate
calculus, security, data integrity

CR CATEGORIES: 3.70, 3.73, 3.75, 4.20, 4.22, 4.29

1. Relational Model and Normal Form

1 .I. INTR~xJ~TI~N
This paper is concerned with the application of ele-

mentary relation theory to systems which provide shared
access to large banks of formatted data. Except for a paper
by Childs [l], the principal application of relations to data
systems has been to deductive question-answering systems.
Levein and Maron [2] provide numerous references to work
in this area.

In contrast, the problems treated here are those of data
independence-the independence of application programs
and terminal activities from growth in data types and
changes in data representation-and certain kinds of data
inconsistency which are expected to become troublesome
even in nondeductive systems.

Volume 13 / Number 6 / June, 1970

The relational view (or model) of data described in
Section 1 appears to be superior in several respects to the
graph or network model [3,4] presently in vogue for non-
inferential systems. It provides a means of describing data
with its natural structure only-that is, without superim-
posing any additional structure for machine representation
purposes. Accordingly, it provides a basis for a high level
data language which will yield maximal independence be-
tween programs on the one hand and machine representa-
tion and organization of data on the other.

A further advantage of the relational view is that it
forms a sound basis for treating derivability, redundancy,
and consistency of relations-these are discussed in Section
2. The network model, on the other hand, has spawned a
number of confusions, not the least of which is mistaking
the derivation of connections for the derivation of rela-
tions (see remarks in Section 2 on the “connection trap”).

Finally, the relational view permits a clearer evaluation
of the scope and logical limitations of present formatted
data systems, and also the relative merits (from a logical
standpoint) of competing representations of data within a
single system. Examples of this clearer perspective are
cited in various parts of this paper. Implementations of
systems to support the relational model are not discussed.

1.2. DATA DEPENDENCIES IN PRESENT SYSTEMS
The provision of data description tables in recently de-

veloped information systems represents a major advance
toward the goal of data independence [5,6,7]. Such tables
facilitate changing certain characteristics of the data repre-
sentation stored in a data bank. However, the variety of
data representation characteristics which can be changed
without logically impairing some application programs is
still quite limited. Further, the model of data with which
users interact is still cluttered with representational prop-
erties, particularly in regard to the representation of col-
lections of data (as opposed to individual items). Three of
the principal kinds of data dependencies which still need
to be removed are: ordering dependence, indexing depend-
ence, and access path dependence. In some systems these
dependencies are not clearly separable from one another.

1.2.1. Ordering Dependence. Elements of data in a
data bank may be stored in a variety of ways, some involv-
ing no concern for ordering, some permitting each element
to participate in one ordering only, others permitting each
element to participate in several orderings. Let us consider
those existing systems which either require or permit data
elements to be stored in at least one total ordering which is
closely associated with the hardware-determined ordering
of addresses. For example, the records of a file concerning
parts might be stored in ascending order by part serial
number. Such systems normally permit application pro-
grams to assume that the order of presentation of records
from such a file is identical to (or is a subordering of) the

Communications of the ACM 377

Relational
Model

E.F. Codd
(1970)

1980 1990 2010

Bigtable: A Distributed Storage System for Structured Data

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach
Mike Burrows, Tushar Chandra, Andrew Fikes, Robert E. Gruber

{fay,jeff,sanjay,wilsonh,kerr,m3b,tushar,fikes,gruber}@google.com

Google, Inc.

Abstract
Bigtable is a distributed storage system for managing
structured data that is designed to scale to a very large
size: petabytes of data across thousands of commodity
servers. Many projects at Google store data in Bigtable,
including web indexing, Google Earth, and Google Fi-
nance. These applications place very different demands
on Bigtable, both in terms of data size (from URLs to
web pages to satellite imagery) and latency requirements
(from backend bulk processing to real-time data serving).
Despite these varied demands, Bigtable has successfully
provided a flexible, high-performance solution for all of
these Google products. In this paper we describe the sim-
ple data model provided by Bigtable, which gives clients
dynamic control over data layout and format, and we de-
scribe the design and implementation of Bigtable.

1 Introduction

Over the last two and a half years we have designed,
implemented, and deployed a distributed storage system
for managing structured data at Google called Bigtable.
Bigtable is designed to reliably scale to petabytes of
data and thousands of machines. Bigtable has achieved
several goals: wide applicability, scalability, high per-
formance, and high availability. Bigtable is used by
more than sixty Google products and projects, includ-
ing Google Analytics, Google Finance, Orkut, Person-
alized Search, Writely, and Google Earth. These prod-
ucts use Bigtable for a variety of demanding workloads,
which range from throughput-oriented batch-processing
jobs to latency-sensitive serving of data to end users.
The Bigtable clusters used by these products span a wide
range of configurations, from a handful to thousands of
servers, and store up to several hundred terabytes of data.
In manyways, Bigtable resembles a database: it shares
many implementation strategies with databases. Paral-
lel databases [14] and main-memory databases [13] have

achieved scalability and high performance, but Bigtable
provides a different interface than such systems. Bigtable
does not support a full relational data model; instead, it
provides clients with a simple data model that supports
dynamic control over data layout and format, and al-
lows clients to reason about the locality properties of the
data represented in the underlying storage. Data is in-
dexed using row and column names that can be arbitrary
strings. Bigtable also treats data as uninterpreted strings,
although clients often serialize various forms of struc-
tured and semi-structured data into these strings. Clients
can control the locality of their data through careful
choices in their schemas. Finally, Bigtable schema pa-
rameters let clients dynamically control whether to serve
data out of memory or from disk.
Section 2 describes the data model in more detail, and
Section 3 provides an overview of the client API. Sec-
tion 4 briefly describes the underlying Google infrastruc-
ture on which Bigtable depends. Section 5 describes the
fundamentals of the Bigtable implementation, and Sec-
tion 6 describes some of the refinements that we made
to improve Bigtable’s performance. Section 7 provides
measurements of Bigtable’s performance. We describe
several examples of how Bigtable is used at Google
in Section 8, and discuss some lessons we learned in
designing and supporting Bigtable in Section 9. Fi-
nally, Section 10 describes related work, and Section 11
presents our conclusions.

2 Data Model

A Bigtable is a sparse, distributed, persistent multi-
dimensional sorted map. The map is indexed by a row
key, column key, and a timestamp; each value in the map
is an uninterpreted array of bytes.

(row:string, column:string, time:int64) → string

To appear in OSDI 2006 1

G R
 A
 P
 H
 U
 L
 O

Google
BigTable

Chang et al
(2006)

Scalable SQL and NoSQL Data Stores
Rick Cattell

Originally published in 2010, last
revised December 2011

ABSTRACT
 In this paper, we examine a number of SQL and so-
called “NoSQL” data stores designed to scale simple
OLTP-style application loads over many servers.
Originally motivated by Web 2.0 applications, these
systems are designed to scale to thousands or millions
of users doing updates as well as reads, in contrast to
traditional DBMSs and data warehouses. We contrast
the new systems on their data model, consistency
mechanisms, storage mechanisms, durability
guarantees, availability, query support, and other
dimensions. These systems typically sacrifice some of
these dimensions, e.g. database-wide transaction
consistency, in order to achieve others, e.g. higher
availability and scalability.
Note: Bibliographic references for systems are not
listed, but URLs for more information can be found in
the System References table at the end of this paper.

Caveat: Statements in this paper are based on sources
and documentation that may not be reliable, and the
systems described are “moving targets,” so some
statements may be incorrect. Verify through other
sources before depending on information here.
Nevertheless, we hope this comprehensive survey is
useful! Check for future corrections on the author’s
web site cattell.net/datastores.
Disclosure: The author is on the technical advisory
board of Schooner Technologies and has a consulting
business advising on scalable databases.

1. OVERVIEW
In recent years a number of new systems have been
designed to provide good horizontal scalability for
simple read/write database operations distributed over
many servers. In contrast, traditional database
products have comparatively little or no ability to scale
horizontally on these applications. This paper
examines and compares the various new systems.
Many of the new systems are referred to as “NoSQL”
data stores. The definition of NoSQL, which stands
for “Not Only SQL” or “Not Relational”, is not
entirely agreed upon. For the purposes of this paper,
NoSQL systems generally have six key features:

1. the ability to horizontally scale “simple
operation” throughput over many servers,

2. the ability to replicate and to distribute (partition)
data over many servers,

3. a simple call level interface or protocol (in
contrast to a SQL binding),

4. a weaker concurrency model than the ACID
transactions of most relational (SQL) database
systems,

5. efficient use of distributed indexes and RAM for
data storage, and

6. the ability to dynamically add new attributes to
data records.

The systems differ in other ways, and in this paper we
contrast those differences. They range in functionality
from the simplest distributed hashing, as supported by
the popular memcached open source cache, to highly
scalable partitioned tables, as supported by Google’s
BigTable [1]. In fact, BigTable, memcached, and
Amazon’s Dynamo [2] provided a “proof of concept”
that inspired many of the data stores we describe here:
• Memcached demonstrated that in-memory indexes

can be highly scalable, distributing and replicating
objects over multiple nodes.

• Dynamo pioneered the idea of eventual
consistency as a way to achieve higher availability
and scalability: data fetched are not guaranteed to
be up-to-date, but updates are guaranteed to be
propagated to all nodes eventually.

• BigTable demonstrated that persistent record
storage could be scaled to thousands of nodes, a
feat that most of the other systems aspire to.

A key feature of NoSQL systems is “shared nothing”
horizontal scaling – replicating and partitioning data
over many servers. This allows them to support a large
number of simple read/write operations per second.
This simple operation load is traditionally called OLTP
(online transaction processing), but it is also common
in modern web applications
The NoSQL systems described here generally do not
provide ACID transactional properties: updates are
eventually propagated, but there are limited guarantees
on the consistency of reads. Some authors suggest a
“BASE” acronym in contrast to the “ACID” acronym:
• BASE = Basically Available, Soft state,

Eventually consistent
• ACID = Atomicity, Consistency, Isolation, and

Durability
The idea is that by giving up ACID constraints, one
can achieve much higher performance and scalability.

NewSQL
Cattell (2010)

SQL Era NoSQL Era NewSQL Era Future

Federated, high
performance
ingest and
analytics

Fast analytics inside databases Common interface Rapid ingest for internet search

SQL = Structured Query Language
NoSQL = Not only SQL

DoD Prof. Stonebraker
(MIT)

Lincoln Prof. Stonebraker
(U.C. Berkeley)

Larry Ellison

Chapter 1

Storage and Database Management for Big

Data

1.1 Introduction

The ability to collect and analyze large amounts of data is a growing problem within the scientific

community. The growing gap between data and users calls for innovative tools that address the

challenges faced by big data volume, velocity and variety. While there has been great progress in

the world of database technologies in the past few years, there are still many fundamental consider-

ations that must be made by scientists. For example, which of the seemingly infinite technologies

are the best to use for my problem? Answers to such questions require a careful understanding of

the technology field in addition to the types of problems that are being solved. This chapter aims to

address many of the pressing questions faced by individuals interested in using storage or database

technologies to solve their big data problems.

This work is sponsored by the Assistant Secretary of Defense for Research and Engineering under Air Force Contract #FA8721-05-C-0002.
Opinions, interpretations, recommendations and conclusions are those of the authors and are not necessarily endorsed by the United States Govern-
ment.

1

Storage for
Big Data

 Gadepally,

Kepner,
Reuther
(2016)

Slide - 8

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

Declarative, Mathematically Rigorous Interfaces

v ATvAT

à

alice

bob

alice

carl

bob

carl
cited

cited

SQL
Set Operations

NoSQL
Graph Operations

NewSQL
Linear Algebra

Associative Array Algebra Provides a Unified Mathematics for SQL, NoSQL, NewSQL

Operations in All Representations are Equivalent

A = NxM(k1,k2,v,⊕) (k1,k2,v) = A C = AT C = A ⊕ B C = A ⊗ C C = A B = A ⊕.⊗ B

from link to
001 alice cited bob
002 bob cited alice
003 alice cited carl

SELECT
WHERE from=alice

Slide - 9

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

High
Clock

Quantum
Annealing/Gates

Advanced
Research

Ising/Qbits

ASIC,
FPGA,
Optics

3D Stacking,
On-Chip Optics

Advanced
Research

GraphBLAS

machine
learning

machine
learning

physical
simulation

Cray Aries,
OmniPath,
Solid State

Intel Phi,
Nvidia GPU

Intel MKL
CuBLAS

BigDAWG

COTS Leading Edge

Mission Drivers
High performance data analysis: machine learning, graph analytics, sequence analysis, ...
Physical systems modeling: robotic vehicles, electronic devices, ...

Advanced Computing Landscape

high
byte/op

high
op/byte

hardware hardware

software/
mathematics

software/
mathematics

big data,
IoT

Monte Carlo
simulation

X86, Ethernet,
InfiniBand,

Spindles, Lustre

combinatorial
optimization

graph
analysis

D4M,
Accumulo

pMatlab,
BLAS

Lincoln Laboratory
Supercomputing Center

Slide - 10

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

High
Clock

Quantum
Annealing/Gates

Advanced
Research

Ising/Qbits

ASIC,
FPGA,
Optics

3D Stacking,
On-Chip Optics

Advanced
Research

GraphBLAS

machine
learning

machine
learning

physical
simulation

Cray Aries,
OmniPath,
Solid State

Intel Phi,
Nvidia GPU

Intel MKL
CuBLAS

BigDAWG

COTS Leading Edge

Mission Drivers
High performance data analysis: machine learning, graph analytics, sequence analysis, ...
Physical systems modeling: robotic vehicles, electronic devices, ...

LLSC Advanced Computing Landscape

high
byte/op

high
op/byte

hardware hardware

software/
mathematics

software/
mathematics

big data,
IoT

Monte Carlo
simulation

X86, Ethernet,
InfiniBand,

Spindles, Lustre

combinatorial
optimization

graph
analysis

D4M,
Accumulo

pMatlab,
BLAS

Lincoln Laboratory
Supercomputing Center

Scale-Up: Intel KNL
Parallel Matlab ~2 Teraflops

KNL 7210 cores

Te
ra

flo
ps

0.01

0.1

1

10

1 2 4 8 16 32 64

Slide - 11

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

High
Clock

Quantum
Annealing/Gates

Advanced
Research

Ising/Qbits

ASIC,
FPGA,
Optics

3D Stacking,
On-Chip Optics

Advanced
Research

GraphBLAS

machine
learning

machine
learning

physical
simulation

Cray Aries,
OmniPath,
Solid State

Intel Phi,
Nvidia GPU

Intel KNL
CuBLAS

BigDAWG

COTS Leading Edge

Mission Drivers
High performance data analysis: machine learning, graph analytics, sequence analysis, ...
Physical systems modeling: robotic vehicles, electronic devices, ...

LLSC Advanced Computing Landscape

high
byte/op

high
op/byte

hardware hardware

software/
mathematics

software/
mathematics

big data,
IoT

Monte Carlo
simulation

X86, Ethernet,
InfiniBand,

Spindles, Lustre

combinatorial
optimization

graph
analysis

D4M,
Accumulo

pMatlab,
BLAS

Lincoln Laboratory
Supercomputing Center

Scale-Up: World record holder in
single node database performance

Number of MATLAB processes
2 4 6 8 10 12

En
tri

es
 p

er
 s

ec
on

d

×106

0.5

1

1.5

2

2.5

3
2 threads/node
4 threads/node
8 threads/node
16 threads/node

2.8M inserts/sec
(SciDB)

single node processes

da
ta

ba
se

 in
se

rts
/s

ec

D4M and Large Array Databases for Management and Analysis of Large Biomedical Imaging Data, Samsi et al., NEDB 2016

Slide - 12

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

High
Clock

Quantum
Annealing/Gates

Advanced
Research

Ising/Qbits

ASIC,
FPGA,
Optics

3D Stacking,
On-Chip Optics

Advanced
Research

GraphBLAS

machine
learning

machine
learning

physical
simulation

Cray Aries,
OmniPath,
Solid State

Intel Phi,
Nvidia GPU

Intel KNL
CuBLAS

BigDAWG

COTS Leading Edge

Mission Drivers
High performance data analysis: machine learning, graph analytics, sequence analysis, ...
Physical systems modeling: robotic vehicles, electronic devices, ...

LLSC Advanced Computing Landscape

high
byte/op

high
op/byte

hardware hardware

software/
mathematics

software/
mathematics

big data,
IoT

Monte Carlo
simulation

X86, Ethernet,
InfiniBand,

Spindles, Lustre

combinatorial
optimization

graph
analysis

D4M,
Accumulo

pMatlab,
BLAS

Lincoln Laboratory
Supercomputing Center

Scale-Out: World record holder in
system wide database performance

number of hardware nodes

da
ta

ba
se

 in
se

rts
/s

ec

100 101 102 103
105

106

107

108

109

total hardware nodes

da
ta

ba
se

 in
se

rts
/s

ec
on

d

Accumulo
Cassandra
Oracle

4M/s
(MIT LL 2012)

115M/s
(MIT LL 2014)

1M/s
(Google 2014)

108M/s
(BAH 2013)

140K/s (Oracle 2013)

115M inserts/sec
(Accumulo)

Achieving 100,000,000 database inserts per second using Accumulo and D4M, IEEE HPEC 2014

Slide - 13

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

High
Clock

Quantum
Annealing/Gates

Advanced
Research

Ising/Qbits

ASIC,
FPGA,
Optics

3D Stacking,
On-Chip Optics

Advanced
Research

GraphBLAS

machine
learning

machine
learning

physical
simulation

Cray Aries,
OmniPath,
Solid State

Intel Phi,
Nvidia GPU

Intel KNL
CuBLAS

BigDAWG

COTS Leading Edge

Mission Drivers
High performance data analysis: machine learning, graph analytics, sequence analysis, ...
Physical systems modeling: robotic vehicles, electronic devices, ...

LLSC Advanced Computing Landscape

high
byte/op

high
op/byte

hardware hardware

software/
mathematics

software/
mathematics

big data,
IoT

Monte Carlo
simulation

X86, Ethernet,
InfiniBand,

Spindles, Lustre

combinatorial
optimization

graph
analysis

D4M,
Accumulo

pMatlab,
BLAS

Lincoln Laboratory
Supercomputing Center

Novel Graph Processor Architecture, Prototype System, and Results, Song, et al., IEEE HPEC 2016

Scale-Deep: FPGA GraphProcessor
Database Performance

100 101 102 103
105

106

107

108

109

total hardware nodes

da
ta

ba
se

 in
se

rts
/s

ec
on

d

Accumulo
Cassandra
Oracle

4M/s
(MIT LL 2012)

115M/s
(MIT LL 2014)

1M/s
(Google 2014)

108M/s
(BAH 2013)

140K/s (Oracle 2013)

GraphProcessor
faster than 200+ node

database cluster

200 M/s
GraphProcessor

- in memory -
(MIT LL 2016)

architecture [14] was developed to provide significantly higher
throughput than the conventional merge sorters.

The k-way merge sorter sorts long sequences of numbers
by using a recursive “divide and conquer” approach. It divides
the sequence into k sequences that have equal, or as equal as
possible, lengths. The k shorter sequences are then sorted
independently and merged to produce the sorted result. The
sorting of k shorter sequences can also be divided into k even
shorter sequences and sorted recursively by using the same
merge sort algorithm. This process is recursively repeated until
the divided sequence length reaches 1. The sorting process
takes order nlogkn memory cycles. The k-way merge sort is
log2k times faster than the 2-way merge sort process when k is
greater than 2. For example, when k = 32, the k-way merge
sorter has five times greater sorter throughput than the 2-way
merge sorter. The main difficulty with implementing a k-way
merge sorter in a conventional processor is that it takes many
clock cycles to figure out the smallest (or largest) value among
k entries during each step of the merge sorting process. Ideally,
the smallest value of k should be computed within one
processor clock cycle for the maximum sorter throughput. The
100% efficient systolic merge sorter [9] can achieve this
performance requirement using k linear systolic array cells and
it is particularly well suited for FPGA and integrated circuit
(IC) implementation since it consists of repeated systolic cells
with nearest-neighbor-only communications.

C. 6D Toroidal Communication Network and
Randomized Message Routing

The new graph processor architecture is a parallel processor
interconnected in a 6D toroidal configuration using high
bandwidth optical links. The 6D toroid provides much higher
communication performance than lower-dimensional toroids
because of the higher bisection bandwidth.

The communication network is designed as a packet-
routing network optimized to support small packet sizes that
are as small as a single sparse matrix element. The network
scheduling and protocol are designed such that successive
communication packets from a node would have randomized
destinations in order to minimize network congestion [15].
This design is a great contrast to typical conventional
multiprocessor message-routing schemes that are based on
much larger message sizes and globally arbitrated routing that
are used in order to minimize the message-routing overhead.
However, large message-based communications are often
difficult to route and can have a relatively high message
contention rate caused by the long time periods during which
the involved communication links are tied up. The small
message sizes, along with randomized destination routing,
minimize message contentions and improve the overall
network communication throughput. Figure 6 shows the 512-
node (8 × 8 × 8) 3D toroidal network (drawn as 3 × 3 × 3
network for illustration purposes) simulation based on
randomized destination communication versus unique
destination communication. Even though both routing methods
are based on small message sizes, the unique destination
routing has a message contention rate that is closer to the
contention rate of conventional routing algorithms that are

based on large message sizes. The randomized destination
routing achieved approximately six times higher data rate and
network utilization efficiency in the simulation using an
identical network.

Fig. 6. Randomized destination vs. unique destination packet
communication.

III. FPGA PROTOTYPE DEVELOPMENT AND PERFORMANCE
MEASUREMENT

Lincoln Laboratory has developed an FPGA prototype of
the graph processor using commercial FPGA boards as shown
in Figure 7. Each board has one large FPGA and two 4-GByte
DDR3 memory banks. Two graph processor nodes are
implemented in each board. A small 4-board chassis
implements an 8-node graph processor tied together with 1D
toroidal network. Since the commercial board offered limited
scalability due to limited number of communication ports for
network connection, the larger prototypes will be developed in
the future using custom FPGA boards that can support 6D
toroidal network and up to 1 million nodes.

Fig. 7. FPGA prototype of the graph processor.

Slide - 14

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

•  Introduction

•  Approach

•  Future

•  Summary

Outline

Slide - 15

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

Computing Past
Serial
Local

Homogeneous
Deterministic

OS Managed

Processes
Memory

Files

Communications
Security

Challenge: New OS for a New Era of Computers

Computing Present
Massively Parallel
Distributed

Heterogeneous
Non-Deterministic

User Managed

Processes
Memory
Files

Communications
Security

architecture [14] was developed to provide significantly higher
throughput than the conventional merge sorters.

The k-way merge sorter sorts long sequences of numbers
by using a recursive “divide and conquer” approach. It divides
the sequence into k sequences that have equal, or as equal as
possible, lengths. The k shorter sequences are then sorted
independently and merged to produce the sorted result. The
sorting of k shorter sequences can also be divided into k even
shorter sequences and sorted recursively by using the same
merge sort algorithm. This process is recursively repeated until
the divided sequence length reaches 1. The sorting process
takes order nlogkn memory cycles. The k-way merge sort is
log2k times faster than the 2-way merge sort process when k is
greater than 2. For example, when k = 32, the k-way merge
sorter has five times greater sorter throughput than the 2-way
merge sorter. The main difficulty with implementing a k-way
merge sorter in a conventional processor is that it takes many
clock cycles to figure out the smallest (or largest) value among
k entries during each step of the merge sorting process. Ideally,
the smallest value of k should be computed within one
processor clock cycle for the maximum sorter throughput. The
100% efficient systolic merge sorter [9] can achieve this
performance requirement using k linear systolic array cells and
it is particularly well suited for FPGA and integrated circuit
(IC) implementation since it consists of repeated systolic cells
with nearest-neighbor-only communications.

C. 6D Toroidal Communication Network and
Randomized Message Routing

The new graph processor architecture is a parallel processor
interconnected in a 6D toroidal configuration using high
bandwidth optical links. The 6D toroid provides much higher
communication performance than lower-dimensional toroids
because of the higher bisection bandwidth.

The communication network is designed as a packet-
routing network optimized to support small packet sizes that
are as small as a single sparse matrix element. The network
scheduling and protocol are designed such that successive
communication packets from a node would have randomized
destinations in order to minimize network congestion [15].
This design is a great contrast to typical conventional
multiprocessor message-routing schemes that are based on
much larger message sizes and globally arbitrated routing that
are used in order to minimize the message-routing overhead.
However, large message-based communications are often
difficult to route and can have a relatively high message
contention rate caused by the long time periods during which
the involved communication links are tied up. The small
message sizes, along with randomized destination routing,
minimize message contentions and improve the overall
network communication throughput. Figure 6 shows the 512-
node (8 × 8 × 8) 3D toroidal network (drawn as 3 × 3 × 3
network for illustration purposes) simulation based on
randomized destination communication versus unique
destination communication. Even though both routing methods
are based on small message sizes, the unique destination
routing has a message contention rate that is closer to the
contention rate of conventional routing algorithms that are

based on large message sizes. The randomized destination
routing achieved approximately six times higher data rate and
network utilization efficiency in the simulation using an
identical network.

Fig. 6. Randomized destination vs. unique destination packet
communication.

III. FPGA PROTOTYPE DEVELOPMENT AND PERFORMANCE
MEASUREMENT

Lincoln Laboratory has developed an FPGA prototype of
the graph processor using commercial FPGA boards as shown
in Figure 7. Each board has one large FPGA and two 4-GByte
DDR3 memory banks. Two graph processor nodes are
implemented in each board. A small 4-board chassis
implements an 8-node graph processor tied together with 1D
toroidal network. Since the commercial board offered limited
scalability due to limited number of communication ports for
network connection, the larger prototypes will be developed in
the future using custom FPGA boards that can support 6D
toroidal network and up to 1 million nodes.

Fig. 7. FPGA prototype of the graph processor.

Slide - 16

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

Potential Organizing Principles
•  Faster, simpler, easier-to-use, provides the data to know what happened when

•  Database, data analysis, machine learning are first order operations

•  OS designed to analyze itself

•  Graduate Unix's "everything is a file" philosophy to "everything is a table”

•  Rigorously defined mathematical interfaces and properties

TabularOSA: Tabular Operating System Architecture

Slide - 17

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

Books

2009
(Scale-Up, Scale-Out)

2011
(Scale-Deep)

2017
(Scale-Deep)

P
ersp

ectives o
n D

efense S
ystem

s A
nalysis

William P. Delaney

The Department of Defense and the military continually grapple with complex
scientific, engineering, and technological problems. Defense systems analysis
offers a way to reach a clearer understanding of how to approach and think
about complex problems. It guides analysts confronting such a problem in de-
fining the question, capturing previous work in the area, assessing the principal
issues, and understanding how they are linked. The goal of defense systems
analysis is not necessarily to find a particular solution but to provide a roadmap
to a solution, or an understanding of the relative value of alternative solutions.
In this book, experts in the field—all of them with more than twenty years
of experience—offer insights, advice, and concrete examples to guide practi-
tioners in the art of defense systems analysis.
 The book describes general issues in systems analysis and analysis
protocols in specific defense areas. It offers a useful overview of the process,
a discussion of different venues, and practical advice for running a study and
reporting its results. It discusses red teaming (the search for vulnerabilities that
might be exploited by an adversary) and its complement, blue teaming (the
search for solutions to known shortcomings). It describes real-world defense
systems analysis for both traditional and nontraditional areas, including air
defense and ballistic missile defense systems, bioterrorism defense, space
warfare, and interplanetary communications. Perspectives on Defense Systems
Analysis is a very readable resource for analysts and engineers in industry,
government, and research.

William P. Delaney is the Director’s Office Fellow and former Assistant Director
at MIT Lincoln Laboratory, and a former member of the Office of the Secretary
of Defense for R&D in Air, Missile, and Space Defense.

Cover image: Preferential
missile defense

M I T L I N C O L N L A B O R AT O RY S E R I E S

D
elaney

William P. Delaney

THE MIT PRESS
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE, MASSACHUSETTS 02142
HTTP://MITPRESS.MIT.EDU

engineering/defense

978-0-262-02935-3

Perspectives on
Defense Systems Analysis
The What, the Why, and the Who,
but Mostly the How of
Broad Defense Systems Analysis

Perspectives on
Defense Systems Analysis

The What, the Why, and the Who,
but Mostly the How of
Broad Defense Systems Analysis

9 780262 029353

9 0 0 0 0

M IT LI NCOLN LABORATORY SERI ES

MIT LINCOLN LABORATORY BOOK SERIES SIAM SOFTWARE • ENVIRONMENTS • TOOLS

Mathematics of Big Data
Spreadsheets, Databases,
Matrices, and Graphs

Jeremy Kepner and Hayden Jansen

Based on strong collaborations with MIT faculty, researchers, and students: Parallel Matlab
(Prof. Edelman), Graph Algorithms (Prof. Gilbert), Big Data (Profs. Madden & Stonebraker)

Basis of
software used
by 100,000s
of scientists
& engineers

Basis of
GraphBLAS.org

standard
developed by

Intel, IBM,
Nvidia, …

First book
on the

mathematical
foundations

of “Big Data”

Slide - 18

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

IEEE-HPEC.org

Slide - 19

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

MIT LINCOLN LABORATORY
S U P E R C O M P U T I N G C E N T E R

Volume
•  Challenge: Scale of data beyond what current approaches can handle
•  Hardware Solution: Scale-out, more servers per data center (hyperscale)

Velocity
•  Challenge: Rate of data beyond what current approaches can handle
•  Hardware Solution: Scale-up, more transistors per server (accelerators)

Variety
•  Challenge: Diversity of data beyond what current approaches can handle
•  Hardware Solution: Scale-deep, more customizable processors (FPGAs, ...)

Summary

Requires mathematically rigorous approaches to insulate users from scaling

architecture [14] was developed to provide significantly higher
throughput than the conventional merge sorters.

The k-way merge sorter sorts long sequences of numbers
by using a recursive “divide and conquer” approach. It divides
the sequence into k sequences that have equal, or as equal as
possible, lengths. The k shorter sequences are then sorted
independently and merged to produce the sorted result. The
sorting of k shorter sequences can also be divided into k even
shorter sequences and sorted recursively by using the same
merge sort algorithm. This process is recursively repeated until
the divided sequence length reaches 1. The sorting process
takes order nlogkn memory cycles. The k-way merge sort is
log2k times faster than the 2-way merge sort process when k is
greater than 2. For example, when k = 32, the k-way merge
sorter has five times greater sorter throughput than the 2-way
merge sorter. The main difficulty with implementing a k-way
merge sorter in a conventional processor is that it takes many
clock cycles to figure out the smallest (or largest) value among
k entries during each step of the merge sorting process. Ideally,
the smallest value of k should be computed within one
processor clock cycle for the maximum sorter throughput. The
100% efficient systolic merge sorter [9] can achieve this
performance requirement using k linear systolic array cells and
it is particularly well suited for FPGA and integrated circuit
(IC) implementation since it consists of repeated systolic cells
with nearest-neighbor-only communications.

C. 6D Toroidal Communication Network and
Randomized Message Routing

The new graph processor architecture is a parallel processor
interconnected in a 6D toroidal configuration using high
bandwidth optical links. The 6D toroid provides much higher
communication performance than lower-dimensional toroids
because of the higher bisection bandwidth.

The communication network is designed as a packet-
routing network optimized to support small packet sizes that
are as small as a single sparse matrix element. The network
scheduling and protocol are designed such that successive
communication packets from a node would have randomized
destinations in order to minimize network congestion [15].
This design is a great contrast to typical conventional
multiprocessor message-routing schemes that are based on
much larger message sizes and globally arbitrated routing that
are used in order to minimize the message-routing overhead.
However, large message-based communications are often
difficult to route and can have a relatively high message
contention rate caused by the long time periods during which
the involved communication links are tied up. The small
message sizes, along with randomized destination routing,
minimize message contentions and improve the overall
network communication throughput. Figure 6 shows the 512-
node (8 × 8 × 8) 3D toroidal network (drawn as 3 × 3 × 3
network for illustration purposes) simulation based on
randomized destination communication versus unique
destination communication. Even though both routing methods
are based on small message sizes, the unique destination
routing has a message contention rate that is closer to the
contention rate of conventional routing algorithms that are

based on large message sizes. The randomized destination
routing achieved approximately six times higher data rate and
network utilization efficiency in the simulation using an
identical network.

Fig. 6. Randomized destination vs. unique destination packet
communication.

III. FPGA PROTOTYPE DEVELOPMENT AND PERFORMANCE
MEASUREMENT

Lincoln Laboratory has developed an FPGA prototype of
the graph processor using commercial FPGA boards as shown
in Figure 7. Each board has one large FPGA and two 4-GByte
DDR3 memory banks. Two graph processor nodes are
implemented in each board. A small 4-board chassis
implements an 8-node graph processor tied together with 1D
toroidal network. Since the commercial board offered limited
scalability due to limited number of communication ports for
network connection, the larger prototypes will be developed in
the future using custom FPGA boards that can support 6D
toroidal network and up to 1 million nodes.

Fig. 7. FPGA prototype of the graph processor.

