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Information Propagation?: Need for Modelling??

@ Many real-world processes can be interpreted using concepts
from information propagation

@ For example: Spread of Diseases

Graph simulation example

Time = 1

2Propagation/Flow/Spread/Diffusion, would be used interchangeably
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Need for Modelling??

@ Traffic Congestion and its propagation
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Other Applications

@ Using the word-of-mouth effect for:
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Other Applications

@ Using the word-of-mouth effect for:

o Viral Marketing: Product/Topic/Event promotion
e Managing Celebrity/Political campaigns
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Other Applications

@ Using the word-of-mouth effect for:

o Viral Marketing: Product/Topic/Event promotion
e Managing Celebrity/Political campaigns

@ Detect and Prevent Outbreaks/Epidemics/Rumours
@ Many more ...
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Existing Information Propagation models

@ Independent Cascade (IC) and Weighted Cascade (WC) Models
@ Linear Threshold (LT) Model
@ Other models — Heat Diffusion etc.
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Existing Information Propagation models
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The Influence Maximization (IM) Problem

@ Input: A graph G, an information-diffusion model Z
@ Constraints: The budget (k = |S|) defining the size of the seed-set
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The Influence Maximization (IM) Problem

@ Input: A graph G, an information-diffusion model Z
@ Constraints: The budget (k = |S|) defining the size of the seed-set
@ Task: ldentify the set of most-influential nodes in a network

e Maximize ¢(S) = E[F(S)]: Expected number of nodes active at the
end, if set S is targeted for initial activation
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The Influence Maximization (IM) Problem

@ Input: A graph G, an information-diffusion model Z

@ Constraints: The budget (k = |S|) defining the size of the seed-set

@ Task: Identify the set of most-influential nodes in a network

e Maximize ¢(S) = E[F(S)]: Expected number of nodes active at the
end, if set S is targeted for initial activation

@ Tractability: The IM problem is NP-hard. Need for Approximate
Solutions!

@ The spread function ¢ is Monotone and Submodular, thus, a
simple GReEeDy algorithm provides the best possible (1 — 1/e)
approximation
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Need for benchmarking? Wide variety of techniques

- Problem Solving i
Categories . Representatives
Perspective
qute Carlo [Spread Simulation J ‘CELF, CELF++ ‘
Estimations
(m===-=- \ Reverse-reachability Sets \ TIM, IMM ‘
Influence | Sampling ( 1 .
— PMC, StaticGreed
| Maximization 1| ‘Snapshots ‘ v ‘

LDAG, SIMPATH,

______ \Score Estimation
- EaSylM, IRIE

—

_____ - Rank Refinement

IMRANK
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Need for benchmarking? Wide variety of techniques

1. Run MC Sim each node to estimate its spread.

i . ; tives
2. Exploit submodularity to prune out nodes with low spread
Monte Carlo [Spread Simulation J ‘CELF, CELF++ ‘
Estimations
(mm==-- /Reverse—reachability Sets \ TIM, IMM ‘
:\ljlflu.en.ce o Sampling ‘Snapshots ‘ PMC, StaticGreedy ‘
|Maximization | )
______ . \"Score Estimation \ LDAG, SIMPATH,
jApproximate | ~ |EaSyIM, IRIE
1Scoring 1 g
— N - - Rank Refinement ‘IMRANK
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Need for benchmarking? Wide variety of techniques

1. Run MC Sim each node to estimate its spread.
2. Exploit submodularity to prune out nodes with low spread

Store a DAG mf nodes and use it to estimate influ-

ence
""" \

rInfluence |

|Maximization |

Sampling

_——————

/Snapshots

‘ PMC, StaticGreedy

\'Score Estimation

LDAG, SIMPATH,
EaSylM, IRIE
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Need for benchmarking? Wide variety of techniques

1. Run MC Sim each node to estimate its spread.
2. Exploit submodularity to prune out nodes with low spread

Store a DAG mf nodes and use it to estimate influ-

ence

Estimate the Me nodes using heuristics as exact
computation is #P - hard

—————— /Rank Refinement \ ‘IMRANK
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Need for benchmarking? : Ambiguities

@ Existing Literature: Use IC, WC interchangeably
@ Actual scenario: Varied behaviour in terms of the spread of seed
nodes, efficiency and scalability aspects of different techniques.
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Figure: IMM (¢ = 0.5) for Orkut dataset

e Influence Maximization January 27, 2017 NEDB, 2017 11/19



Need for benchmarking? : Ambiguities

@ State-of-the-art technique in one aspect behaves the worst in

another aspect of the problem.
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Important Questions

@ How to choose the most appropriate IM technique in a given
specific scenario?

—
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Important Questions

@ How to choose the most appropriate IM technique in a given
specific scenario?

@ What does it really mean to claim to be the state-of-the-art?

—
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Important Questions

@ How to choose the most appropriate IM technique in a given
specific scenario?

@ What does it really mean to claim to be the state-of-the-art?
@ Are the claims made by the recent papers true?

—
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Our Framework

@ Generic framework applicable on all techniques.
@ Unified approach to tune the external parameters.
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Our Framework

@ Generic framework applicable on all techniques.
@ Unified approach to tune the external parameters.

Wgence calculation
Select the parameters'which provide the best quality without
hampering the efficiency and scalability of the technique.
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Myths

@ IMM is always faster than TIM*?

against the states of the art under several popular diftusion mod-
els, using real social networks with up to 1.4 billion edges. Our
experimental results show that the proposed algorithm consistently
outperforms the states of the art in terms of computation efficiency,
and is often orders of magnitude faster.
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Myths

@ IMM is always faster than TIM*?

against the states of the art under several popular diftusion mod-
els, using real social networks with up to 1.4 billion edges. Our
experimental results show that the proposed algorithm consistently
outperforms the states of the art in terms of computation efficiency,
and is often orders of magnitude faster.

Model | ¢ (TIM¥) | ¢ (IMM) | Time (TIM*) | Time (IMM) | Gain
IC 0.05 0.05 8582.23 829.6 | 10.3x
LT 0.35 0.1 0.79 12 0.65x

Table: Comparison of convergence parameter and running time (secs) for IMM and TIM+
over HepPH dataset for 200 seeds
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Myths

@ CELF++ is the fastest IM technique in the MC estimation
paradigm?

5, l,v.'ﬂ. Leskovee et al. [6] proposp:d the CELF algoriihm for
tackling the second. In this work, we propose CELF++ and
empirically show that it is 35-35% faster than CELF.

Categories and Subject Descriptors H.2.8 [Database
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Myths

@ CELF++ is the fastest IM technique in the MC estimation

paradigm?
5, 1,H3]. Leskovee et al. [6] proposed the CELF algorithm for
tackling the second. In this work, we propose CELF++ and
empirically show that it is 35-35% faster than CELF.
Categories and Subject Descriptors H.2.8 [Database
=% CELF mmm 5 CELF mmm
1S CELF++ = £ 180 CELF++ ==
£ £170
o0 o 160
E E1s50
D60 8’140
g E 130
= S120
C 50 o sy
123456 789101112 1234567389101112
Independent Runs (WC) Independent Runs (LT)
(e) Nethept (WC) (f) Nethept (LT)

e Influence Maximization January 27, 2017 NEDB, 2017 16/19



Myths

@ SIMPATH is faster the LDAG?

LUCST UL@WUALAS 1) LUILULPULAULE SCTCLal LIGYEL UPLHILLaLULS.
Through a comprehensive performance study on four real data
sets, we show that SIMPATH consistently outperforms the state of
the art w..t. running time, memory consumption and the quality
of the seed set chosen, measured in terms of expected influence
spread achieved.

Index Terms—Social Networks; Influence Spread; Linear
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Myths

@ SIMPATH is faster the LDAG?
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Through a comprehensive performance study on four real data
sets, we show that SIMPATH consistently outperforms the state of
the art w.r.t. running time, memory consumption and the quality
of the seed set chosen, measured in terms of expected influence

spread achieved.
Index Terms—Social Networks; Influence Spread; Linear
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Conclusions

@ No technique is the best on all aspects of IM.
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Thanks!

@ For more details, please refer :
A. Arora, S. Galhotra, S. Ranu. Debunking the Myths of Influence
Maximization : An In-Depth Benchmarking Study. SIGMOD 2017
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