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Information Propagation2: Need for Modelling??

Many real-world processes can be interpreted using concepts
from information propagation
For example: Spread of Diseases

2Propagation/Flow/Spread/Diffusion, would be used interchangeably
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Need for Modelling??

Traffic Congestion and its propagation
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Other Applications

Using the word-of-mouth effect for:

Viral Marketing: Product/Topic/Event promotion
Managing Celebrity/Political campaigns

Detect and Prevent Outbreaks/Epidemics/Rumours
Many more . . .
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Existing Information Propagation models

Independent Cascade (IC) and Weighted Cascade (WC) Models
Linear Threshold (LT) Model
Other models – Heat Diffusion etc.
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Existing Information Propagation models
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The Influence Maximization (IM) Problem

Input: A graph G, an information-diffusion model I
Constraints: The budget (k = |S|) defining the size of the seed-set

Task: Identify the set of most-influential nodes in a network
Maximize σ(S) = E[F(S)]: Expected number of nodes active at the
end, if set S is targeted for initial activation

Tractability: The IM problem is NP-hard. Need for Approximate
Solutions!
The spread function σ is Monotone and Submodular, thus, a
simple GREEDY algorithm provides the best possible (1− 1/e)
approximation
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Need for benchmarking? Wide variety of techniques

MC Simulation
1. Run MC Simulation from each node to estimate its spread.
2. Exploit submodularity to prune out nodes with low spread

Sampling
Store a DAG for a sample of nodes and use it to estimate influ-
ence

Approximate Scoring
Estimate the influence of the nodes using heuristics as exact
computation is #P - hard
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Need for benchmarking? : Ambiguities

Existing Literature: Use IC, WC interchangeably
Actual scenario: Varied behaviour in terms of the spread of seed
nodes, efficiency and scalability aspects of different techniques.
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Figure: IMM (ε = 0.5) for Orkut dataset
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Need for benchmarking? : Ambiguities

State-of-the-art technique in one aspect behaves the worst in
another aspect of the problem.
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Important Questions

How to choose the most appropriate IM technique in a given
specific scenario?

What does it really mean to claim to be the state-of-the-art?
Are the claims made by the recent papers true?
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Our Framework

Generic framework applicable on all techniques.
Unified approach to tune the external parameters.
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#Parameters

Convergence calculation
Select the parameters which provide the best quality without
hampering the efficiency and scalability of the technique.
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Myths

IMM is always faster than TIM+?

Model ε (TIM+) ε (IMM) Time (TIM+) Time (IMM) Gain
IC 0.05 0.05 8582.23 829.6 10.3x
LT 0.35 0.1 0.79 1.2 0.65x

Table: Comparison of convergence parameter and running time (secs) for IMM and TIM+

over HepPH dataset for 200 seeds
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Myths

CELF++ is the fastest IM technique in the MC estimation
paradigm?
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Myths

SIMPATH is faster the LDAG?
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Conclusions

No technique is the best on all aspects of IM.
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(k) Qualitative catego-
rization of IM techniques

(l) Which technique to choose & when?
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Thanks!

For more details, please refer :
A. Arora, S. Galhotra, S. Ranu. Debunking the Myths of Influence
Maximization : An In-Depth Benchmarking Study. SIGMOD 2017
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